Longitudinal GPS Travel Data and Breach of Privacy via Enhanced Spatial and Demographic Analysis

Vetri Venthan Elango, Sara Khoeini, Yanzhi Xu and Randall Guensler

Overview
- Longitudinal GPS travel data contain a wealth of useful information for model development and policy analysis.
- High resolution GPS data provide accurate spatial and temporal detail for use in analyzing:
 - Household travel and driver behavior
 - Safety
 - Emissions
 - Electric vehicle range requirements
 - Etc.
- Public access to data will benefit other researchers.
- However, participant privacy is a concern.
- Aggressive driving behavior could be subpoenaed.
- Home security can be compromised.
- Human subject's requirements:
 - To protect the privacy of participants, no data may be distributed in any form that can in any way be linked back to an individual, a specific household, a specific vehicle, or a specific work location.
 - The methodological goals of this research effort are:
 - Post-processing high resolution GPS data
 - Retain enough detailed data to be useful in various research communities
 - Ensure privacy of participants.
 - Ensure that separate data sources cannot be “stitched together” to compromise privacy.

Data
- Commute Atlanta Data:
 - Instrumental vehicle research that collected high-resolution GPS (2004-2006)
 - Assess the effects of converting operating costs into variable per-mile driving costs
- Approximately 300 vehicles in 270 households
- 1.2 million vehicle trips
- Approximately 100 households in the pricing study
- It is possible to identify household and work locations when accurate daily trip-level data and detailed second-by-second data are made available

Proposed Commute Atlanta Dataset for Public Access
- Travel diary data (trip-level travel data)
- On-road vehicle activity data (second-by-second)
- Heuristic analysis of each household or vehicle usage data over long periods, behavioral habits can be identified.
- Longitudinal nature of the study – presence of repeated travel
- It is possible to identify household and work locations when accurate daily trip-level data and detailed second-by-second data are made available

Travel Diary Data
- Attributes:
 - Trip Summary Data
 - Primary driver identification, vehicle identification, and household identification
 - Trip details such as distance, start date-time, and end date-time, vehicle non-activity time, origin zone, and destination zone
 - Socio-economic variables
 - Number of vehicles in household, number of vehicles monitored, household size, income, ethnicity, number of workers and students
 - Vehicle Characteristics:
 - Model Year Group, body type, fuel type, and model code
 - Privacy Concerns:
 - Attributes do not directly identify individuals
 - Longitudinal nature of the study – presence of repeated travel
 - Heuristic analysis of each household or vehicle usage data over long periods, behavioral habits can be identified
 - Behavioral habits + socio-economic data can yield the identity of the households and individuals

Figure 1 shows the proposed methodology to identify Home Location using spatial analysis.

On-Road Vehicle Activity Data
- Attributes:
 - GPS data
 - Latitude and Longitude, speed, heading, date and time
 - Number of satellites, position quality information, etc.
 - Background Characteristics
 - HEPMs attributes
 - Georgia Tech Household Classification Group (income, vehicle ownership, and household size)
 - Vehicle Characteristics:
 - Fuel Type, Engine Type, Body Type and Model Year Group
 - Driver Characteristics:
 - Age group and Gender
 - Privacy Concerns:
 - High resolution GPS data can identify participant’s home, work locations,
 - Shopping, recreational and social preferences
 - Driver risk parameters
 - High resolution GPS data + Vehicle Characteristics + Driver Characteristics, yield the identity of individual participants

Figure 4 shows the proposed methodology to identify Home location using spatial analysis.

Summary
- High resolution GPS data can compromise privacy.
- Splitting Commute Atlanta data into two data sets is insufficient because advanced spatial analysis can identify household within a small subset.
- Using demographic data and other data sources such as vehicle registration data without names makes it easier to identify households
- Liability associated with participant privacy protection lies with data collector.
- Future Work:
 - Refine the methodology and use household demographic data purchased from private companies.
 - Develop new techniques and identify variables that need to be withheld or purposefully modified to protect participant privacy.
 - Conduct detailed analysis and make recommendations to reduce liabilities for data collection agencies.

This research was sponsored by the Georgia Department of Transportation under contracts 10-03. Opinions expressed here are those of the authors and not necessarily those of the Georgia Department of Transportation.